DJ-1/Park7 Sensitive Na(+) /H(+) Exchanger 1 (NHE1) in CD4(+) T Cells.

2017 
DJ-1/Park7 is a redox-sensitive chaperone protein counteracting oxidation and presumably contributing to the control of oxidative stress responses and thus inflammation. DJ-1 gene deletion exacerbates the progression of Parkinson's disease presumably by augmenting oxidative stress. Formation of reactive oxygen species (ROS) is paralleled by activation of the Na+/H+ exchanger 1 (NHE1). ROS formation in CD4+ T cells plays a decisive role in regulating inflammatory responses. In the present study we explored whether DJ-1 is expressed in CD4+ T cells and affects ROS production as well as NHE1 in those cells. To this end, DJ-1 and NHE1 transcript and protein levels were quantified by qRT-PCR and Western blotting respectively, intracellular pH (pHi) utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from realkalinization after an ammonium pulse, and ROS production utilizing 2',7' –dichlorofluorescin diacetate (DCFDA) fluorescence. As a result DJ-1 was expressed in CD4+ T cells. ROS formation, NHE1 transcript levels, NHE1 protein, and NHE activity were higher in CD4+ T cells from DJ-1 deficient mice than in CD4+ T cells from wild type mice. Antioxidant N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor staurosporine decreased the NHE activity in DJ-1 deficient CD4+ T cells, and blunted the difference between DJ-1-/- and DJ-1+/+ CD4+ T cells, an observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1-/- CD4+ T cells. In conclusion, DJ-1 is a powerful regulator of ROS production as well as NHE1 expression and activity in CD4+ T cells. This article is protected by copyright. All rights reserved
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    7
    Citations
    NaN
    KQI
    []