High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap

2018 
Optical traps enable nanoscale manipulation of individual biomolecules while measuring molecular forces and lengths. This ability relies on the sensitive detection of optically trapped particles, typically accomplished using laser-based interferometric methods. Recently, precise and fast image-based particle tracking techniques have garnered increased interest as a potential alternative to laser-based detection, however successful integration of image-based methods into optical trapping instruments for biophysical applications and force measurements has remained elusive. Here we develop a camera-based detection platform that enables exceptionally accurate and precise measurements of biological forces and interactions in a dual optical trap. In demonstration, we stretch and unzip DNA molecules while measuring the relative distances of trapped particles from their trapping centers with sub-nanometer accuracy and precision, a performance level previously only achieved using photodiodes. We then use the DNA unzipping technique to localize bound proteins with extraordinary sub-base-pair precision, revealing how thermal DNA fluctuations allow an unzipping fork to sense and respond to a bound protein prior to a direct encounter. This work significantly advances the capabilities of image tracking in optical traps, providing a state-of-the-art detection method that is accessible, highly flexible, and broadly compatible with diverse experimental substrates and other nanometric techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []