ROS-triggered and regenerating anticancer nanosystem: An effective strategy to subdue tumor's multidrug resistance

2014 
Abstract Drug delivery strategies utilizing tumor microenvironment are recognized as a critical doorway to overcome multidrug resistance (MDR). However, the variability of tumor microenvironment at different disease stages would definitely minimize stimuli generation and eventually the therapeutic effects of these stimuli sensitive systems. Herein, we report a unique reactive oxygen species (ROS) triggered nanosystem that can replenish the ROS upon disassembly to maintain its high level. This was accomplished by a new amphiphilic polymer (TBH) composed of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS), hyaluronic acid (HA) and arylboronic ester. As a linker of TPGS to HA, arylboronic ester could efficiently degrade in response to ROS resulting in dismantling of nanosystem followed by rapid release of TPGS. Owing to ROS inducing activity of TPGS with mitochondrial respiratory complex II, ROS regeneration was observed for TBH nanosystem both in MCF-7/ADR cells and tumor tissues xenografted with MCF-7/ADR cells. Furthermore, doxorubicin-loaded TBH nanosystem (DOX-TBH) revealed higher drug cytotoxicity due to enhanced retention effect on account of ROS triggered DOX release and P-gp inhibitory mechanism of TPGS. Moreover, HA significantly improved tumor targeting capability of DOX-TBH, while ROS based triggering and regenerating mechanism lead to marked inhibition of the tumor growth in the xenograft MCF-7/ADR tumor-bearing nude mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    78
    Citations
    NaN
    KQI
    []