Time dependence and local structure of tracer dispersion in oscillating liquid Hele-Shaw flows

2015 
Passive tracer dispersion in oscillating Poiseuille liquid flows of zero net velocity is studied experimentally in a Hele-Shaw cell and numerically by 2D simulations: this study is particularly focused on the time dependence and local properties of the dispersion. The dispersion mechanism is found to be controlled by the ratio τm/T of the molecular diffusion time across the gap and the oscillation period (when molecular diffusion parallel to the flow is negligible). The 2D numerical simulations complement the experiments by providing the local concentration c(x, z, t) at a given distance z from the cell walls (instead of only the average over z). Above a time lapse scaling like τm, the variation of c with the distance x along the flow becomes a Gaussian of width constant with z while the mean distance x may depend both on z and t. For τm/T ≲ 2, the front spreads through Taylor-like dispersion and the normalized dispersivity scales as τm/T. The front oscillates parallel to the flow with an amplitude const...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    3
    Citations
    NaN
    KQI
    []