Low resistance AL2O3 magnetic tunnel junctions optimized through in situ conductance measurements

2005 
In situ electrical conductance is used to monitor the growth and natural oxidation of aluminum on top of a CoFe electrode. Light oxidation is found to enhance the electron specular scattering of the CoFe/vacuum interface. Aluminum deposited onto CoFe intermixes to a depth of a few atomic layers, however, subsequent natural oxidation tends to reverse this interdiffusion through oxygen-driven A1 segregation. At the right A1 thickness, natural oxidation creates a clean and specular CoFe∕AlOx interface very similar to the best achievable CoFe/vacuum interface. For thicker A1, natural oxidation leaves behind underoxidized AlOx and most importantly an interdiffused CoFe∕Al interface. Using 2Torr×150-s natural oxidation, we have fabricated magnetic tunnel junctions (MTJs) with a peak tunnel magnetoresistance (TMR) of 18% for a resistance area product of 7Ωμm2, at the A1 metal thickness of 6 A. With the same oxidation process TMR drops to only 8% when A1 is increased to 9 A. Contrary to the accepted view, we do n...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    5
    Citations
    NaN
    KQI
    []