CdTe quantum dots with green fluorescence generated by bioluminescence resonance energy transfer from aequorin

2017 
The need for external excitation sources limits the utility of quantum dots (QDs) in multiplexed detection schemes and in in vivo imaging, because it can lead to strong background by surface illumination and tissue autofluorescence. In this work, the authors describe the use of oxidized dextran as a support to conjugate the photoprotein aequorin to QDs in order to obtain self-illuminating QDs and an efficient QD-based bioluminescence (BL) resonance energy system. On addition of Ca2+, BL is generated by immobilized aequorin and transferred to the QDs which thereby become photoexcited. Hence, these QDs will fluoresce without being excited by an external light source and therefore have the typical merits (such as very low background) of bioluminescent systems. The half-life of the BL of aequorin peaking at 460 nm is 1.6 s, and that of the QD-conjugated aequorin (peaking at 528 nm) is 6.4 s. We perceive that by labeling antibodies with these nanocomposites, highly advanced multiplex immunoassays will become possible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    6
    Citations
    NaN
    KQI
    []