CO and C 3 H 8 sensitivity behavior of zinc antimonate prepared by a microwave-assisted solution method

2015 
ZnSb2O6 has been synthesized by a microwave-assisted solution method in order to test its possible application as a gas sensor. Zinc nitrate, antimony trichloride, and ethylenediamine were used as precursors and deionized water as solvent. Microwave radiation, with a power of ∼350 W, was applied for solvent evaporation. The thermal decomposition of the precursors leads to the formation of ZnSb2O6 at 600°C. This oxide crystallized in a tetragonal structure with cell parameters a = 4.66 A, c = 9.26 A and space group P42/mnm. Microwires and microrods formed by nanocrystals were observed by means of scanning and transmission electron microscopies (SEM and TEM, resp.). Pellets of the oxide were tested as gas sensors in flowing atmospheres of carbon monoxide (CO) and propane (C3H8). Sensitivity increased with the gas concentration (0-300 ppm) and working temperatures (ambient, 150 and 250°C) increase. The results indicate high sensitivity of ZnSb2O6 in both gases at different concentrations and operating temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    15
    Citations
    NaN
    KQI
    []