Application of new directional logic to improve DC side fault discrimination for high resistance faults in HVDC grids

2017 
This paper proposes a simple and fast way to determine the direction of a fault in a multi-terminal high voltage direct current (HVDC) grid by comparing the rate of change of voltage (ROCOV) values at either side of the di/dt limiting inductors at the line terminals. A local measurement based secure and fast protection method is implemented by supervising a basic ROCOV relay with a directional element. This directional information is also used to develop a slower communication based DC line protection scheme for detecting high resistance faults. The proposed protection scheme is applied to a multi-level modular converter based three-terminal HVDC grid and its security and sensitivity are evaluated through electromagnetic transient simulations. A methodology to set the protection thresholds considering the constraints imposed by the breaker technology and communication delays is also presented. With properly designed di/dt limiting inductors, the ability of clearing any DC transmission system fault before fault currents exceeds a given breaker capacity is demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    12
    Citations
    NaN
    KQI
    []