Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis.

2015 
Liver X receptor (LXR) signaling pathways regulate lipid metabolism and inflammation, which has generated widespread interest in developing synthetic LXR agonists as potential therapeutics for the management of atherosclerosis. In this study, we demonstrate that nanoparticles (NPs) containing the synthetic LXR agonist GW3965 (NP-LXR) exert anti-inflammatory effects and inhibit the development of atherosclerosis without causing hepatic steatosis. These NPs were engineered through self-assembly of a biodegradable diblock poly(lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) copolymer. NP-LXR was significantly more effective than free GW3965 at inducing LXR target gene expression and suppressing inflammatory factors in macrophages in vitro and in vivo. Addtionally, the NPs elicited negligible lipogenic gene stimulation in the liver. Using the Ldlr−/− mouse model of atherosclerosis, we saw abundant co-localization of fluorescently labeled NPs within plaque macrophages following systemic administration. Notably, six intravenous injections of NP-LXR over two weeks markedly reduced the CD68-positive cell (macrophage) content of plaques (by 50%) without increasing total cholesterol or triglycerides in the liver and plasma. Together, these findings identify GW3965-encapsulated PLGA-b-PEG NPs as a promising nanotherapeutic approach to combat atherosclerosis, providing the benefits of LXR agonists without their adverse effects on hepatic and plasma lipid metabolism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    52
    Citations
    NaN
    KQI
    []