Paraglacial Timescale and Sediment Fluxes for Hillslope Land Systems in the Northern Appalachian Mountains of Eastern Canada

2022 
The Appalachian Mountains of Eastern Canada are prone to several mass-wasting processes related to the geology and the nearby presence of large water bodies that influence the climate. Superimposed on this rugged terrain is the impacts of ongoing climate change, which may increase the magnitude, frequency, and duration of an array of hillslope phenomena. In this regard, the quantification of sediment fluxes at various spatiotemporal scales is prerequisite to reducing the exposure of infrastructure and communities, as well as to better understanding the mountain landscape evolution. Here, we report the quantitative modeling of sediment fluxes of several hillslope processes, mainly based on radiocarbon dating, which in turn improves understanding of how sediment has been eroded and transported through these mountain catchments since deglaciation. The results show a variable pattern of paraglacial effects at local and regional scales, highlighting the importance of ecological and hydroclimatic conditions in controlling the duration of glacially conditioned sedimentary stock exhaustion, and therefore the delay of paraglacial responses by geomorphic land systems. Current active scree slopes under the cold-temperate climate are characterized by sedimentation rates slightly lower than those calculated for the periglacial period following deglaciation, and even the sporadic remobilization of the primary stock by alluvial fan dynamics appears to be significant, testifying to a duration of paraglacial processes of more than 10,000 years.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    0
    Citations
    NaN
    KQI
    []