Alkyladenine DNA glycosylase associates with transcription elongation to coordinate DNA repair with gene expression

2019 
Base excision repair (BER) initiated by alkyladenine DNA glycosylase (AAG; aka MPG) is essential for removal of aberrantly methylated DNA bases. Genome instability and accumulation of aberrant bases accompany multiple diseases including cancer and neurological disorders. While BER is well studied on naked DNA, it remains unclear how BER efficiently operates on chromatin. Here we show that AAG binds to chromatin and forms complex with active RNA polymerase (pol) II. This occurs through direct interaction with Elongator and results in transcriptional co-regulation. Importantly, at co-regulated genes aberrantly methylated bases accumulate towards 3-end, in regions enriched for BER enzymes AAG and APE1, Elongator and active RNA pol II. Active transcription and functional Elongator are further crucial to ensure efficient BER, by promoting AAG and APE1 chromatin recruitment. Our findings provide novel insights to maintaining genome stability in actively transcribing chromatin, and reveal roles of aberrantly methylated bases in regulation of gene expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []