Improving the performance of nickel catalyst supported on mesostructured silica nanoparticles in methanation of CO2-rich gas by urea–nitrate combustion

2020 
In this work, NiO supported mesostructured silica nanoparticles (MSN) were synthesized via the urea–nitrate combustion method using urea as fuel and nitrate salts as oxidants with the different urea/nitrate ratios and calcination duration. The physicochemical properties of catalysts were investigated by several techniques, including N2 physisorption measurements, powder X-ray diffraction, N2-BET isothermal adsorption, hydrogen temperature-programmed reduction, carbon dioxide temperature-programmed desorption, scanning electron microscopy and transmission electron microscopy. The obtained catalysts were employed in the methanation of CO2-rich gas at a temperature range of 225–400 °C with the CO2/H2 ratio of 1/4 and CO2 concentration of 20 mol%. The results showed that using the urea–nitrate combustion method in synthesizing catalysts led to improved physicochemical properties that increased the activity of NiO/MSN catalysts. The catalyst prepared with the urea/nitrate molar ratio of 3 and calcined at 600 °C for 3 h showed the highest catalytic performance in methanation of CO2-rich gas, reaching CO2 conversion of 96% and CH4 selectivity of 100% at 375 °C. The best catalyst has excellent stability in CO2 solo-hydrogenation at a reaction temperature of 375 °C during 30 h of reaction thanks to the resistance to coke formation. Besides, adding 1 mol% CO in the feedstock should be simultaneously conducted to surge the effectivity of CO2 methanation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    3
    Citations
    NaN
    KQI
    []