Particle Swarm Optimization-Based Source Seeking

2015 
The task of locating a source based on the measurements of the signal emitted/emanating from it is called the source-seeking problem. In the past few years, there has been a lot of interest in deploying autonomous platforms for source-seeking. Some of the challenging issues with implementing autonomous source-seeking are the lack of a priori knowledge about the distribution of the emitted signal and presence of noise in both the environment and on-board sensor measurements. This paper proposes a planner for a swarm of robots engaged in seeking an electromagnetic source. The navigation strategy for the planner is based on Particle Swarm Optimization (PSO) which is a population-based stochastic optimization technique. An equivalence is established between particles generated in the traditional PSO technique, and the mobile agents in the swarm. Since the positions of the robots are updated using the PSO algorithm, modifications are required to implement the PSO algorithm on real robots to incorporate collision avoidance strategies. The modifications necessary to implement PSO on mobile robots, and strategies to adapt to real environments are presented in this paper. Our results are also validated on an experimental testbed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    48
    Citations
    NaN
    KQI
    []