The lungs were on fire: a pilot study of 18F-FDG PET/CT in idiopathic-inflammatory-myopathy-related interstitial lung disease

2021 
Background Interstitial lung disease (ILD) and its rapid progression (RP) are the main contributors to unfavourable outcomes of patients with idiopathic inflammatory myopathy (IIM). This study aimed to identify the clinical value of PET/CT scans in IIM-ILD patients and to construct a predictive model for RP-ILD. Methods Adult IIM-ILD patients who were hospitalized at four divisions of the First Affiliated Hospital, Zhejiang University School of Medicine (FAHZJU), from 1 January 2017 to 31 December 2020 were reviewed. PET/CT scans and other characteristics of patients who met the inclusion and exclusion criteria were collected and analysed. Results A total of 61 IIM-ILD patients were enrolled in this study. Twenty-one patients (34.4%) developed RP-ILD, and 24 patients (39.3%) died during follow-up. After false discovery rate (FDR) correction, the percent-predicted diffusing capacity of the lung for carbon monoxide (DLCO%, P = 0.014), bilateral lung mean standard uptake value (SUVmean, P = 0.014) and abnormal mediastinal lymph node (P = 0.045) were significantly different between the RP-ILD and non-RP-ILD groups. The subsequent univariate and multivariate logistic regression analyses verified our findings. A "DLM" model was established by including the above three values to predict RP-ILD with a cut-off value of ≥ 2 and an area under the curve (AUC) of 0.905. Higher bilateral lung SUVmean (P = 0.019) and spleen SUVmean (P = 0.011) were observed in IIM-ILD patients who died within 3 months, and a moderate correlation was recognized between the two values. Conclusions Elevated bilateral lung SUVmean, abnormal mediastinal lymph nodes and decreased DLCO% were significantly associated with RP-ILD in IIM-ILD patients. The "DLM" model was valuable in predicting RP-ILD and requires further validation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []