Early detection of cytomegalovirus-specific cytotoxic T lymphocytes against cytomegalovirus antigenemia in human leukocyte antigen haploidentical hematopoietic stem cell transplantation

2015 
Human leukocyte antigen (HLA)-haploidentical stem cell transplantation (haplo-SCT) is associated with a high incidence of cytomegalovirus (CMV) infection, probably originating from the delayed reconstitution of CMV-specific T cell immunity. There have been few reports on the presence of CMV-specific cytotoxic T lymphocytes (CMV-CTLs) after haplo-SCT. We have studied CMV-specific immune reconstitution by measuring the absolute number of CMV-CTLs using a flow cytometry method with HLA-A2-restricted NLVPMVATV peptide dextramers. We examined the association between reconstitution patterns of CMV-CTLs and the duration of CMV antigenemia in 15 patients who underwent first allogeneic SCT from HLA-haploidentical-related donors with HLA-A2. In seven and eight patients, CMV antigenemia consecutively resolved for more than 4 weeks (the CMV antigenemia ‘resolved’ group) and intermittently persisted (the CMV antigenemia ‘persistent’ group) during a 100-day observation period, respectively. The group of the seven patients, in whom levels of CMV antigenemia were reduced to zero, had a significantly lower maximum level of CMV antigenemia than the CMV antigenemia persistent group. In contrast, the CMV antigenemia persistent group had a significantly higher maximum level of CMV-CTLs, but the levels took longer to peak. Despite no difference in general lymphocyte recovery between the two groups, the CMV antigenemia resolved group had significantly higher median CMV-CTL counts than the CMV antigenemia persistent group at 6 weeks after onset of CMV infection. Flow cytometry analysis of CMV-CTLs is a convenient method of monitoring reconstitution of CMV-specific lymphocyte immunity following haplo-SCT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    7
    Citations
    NaN
    KQI
    []