Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1

2011 
Scope: Curcumin inhibits proliferation of many cancer cells. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing intracellular cyclic adenosine-3',5'-monophosphate (cAMP) and/or cyclic guanosine-3',5'-monophosphate (cGMP), play a pivotal role in signalling pathways involved in cell proliferation. Therefore, this study investigated PDE1―5 participations in the anti-proliferative properties of curcumin in B16F10 murine melanoma cells. Methods and results: We report that curcumin inhibits PDE1―5 activities (IC 50 ≅ 10 ―5 M), indicating that curcumin acts as a non-selective PDE inhibitor. In melanoma cells, PDE4 and PDE1 represent the major cAMP-PDEs and cGMP-PDEs activities, respectively. Curcumin treatment decreased PDE1 and PDE4 activities and dose dependently increased intracellular cGMP levels, whereas cAMP levels were unchanged. Curcumin inhibited cell proliferation and cell cycle progression by accumulating cells in the S- and G2/M-phases with enhanced expressions of cyclindependent kinase inhibitors. In contrast, expressions of PDE1A, cyclin A and the epigenetic integrator ubiquitin-like containing PHD and Ring Finger domains 1 (UHRF1) and DNA methyltransferase 1 (DNMT1) were decreased by curcumin. Interestingly, PDE1A overexpression increased UHRF1 and DNMT1 expressions and rescued the B16F10 cells from curcumin anti-proliferative effects. Nimodipine, a PDE1 inhibitor, mimicked the curcumin effects. Conclusion: Curcumin exerts its anti-cancer property by targeting PDE1 that inhibits melanoma cell proliferation via UHRF1, DNMT1, cyclin A, p21 and p27 regulations. This suggests that natural PDE1 inhibitors present in food might be effective in preventing cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    81
    Citations
    NaN
    KQI
    []