β-Actin–dependent global chromatin organization and gene expression programs control cellular identity

2017 
During differentiation and development, cell fate and identity are established by waves of genetic reprogramming. Although the mechanisms are largely unknown, during these events, dynamic chromatin reorganization is likely to ensure that multiple genes involved in the same cellular functions are coregulated, depending on the nuclear environment. In this study, using high-content screening of embryonic fibroblasts from a β-actin knockout (KO) mouse, we found major chromatin rearrangements and changes in histone modifications, such as methylated histone (H)3-lysine-(K)9. Genome-wide H3K9 trimethylation-(Me)3 landscape changes correlate with gene up- and down-regulation in β-actin KO cells. Mechanistically, we found loss of chromatin association by the Brahma-related gene (Brg)/Brahma–associated factor (BAF) chromatin remodeling complex subunit Brg1 in the absence of β-actin. This actin-dependent chromatin reorganization was concomitant with the up-regulation of sets of genes involved in angiogenesis, cytosk...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    33
    Citations
    NaN
    KQI
    []