Development of a high-throughput screening analysis for 288 drugs and poisons in human blood using Orbitrap technology with gas chromatography-high resolution accurate mass spectrometry

2019 
Abstract The screening analysis for drugs and poisons always symbolizes the capabilities of a forensic laboratory. Due to the rapid emergence of new compounds in clinical and forensic intoxication cases, sensitive and specific methods are necessary for the screening of wide range of target compounds. A novel high-throughput screening method has been developed for the toxicological analysis of 288 drugs and poisons in human blood using Orbitrap technology with gas chromatography-high resolution mass spectrometry (GC-HRMS). This method allows for the fast detection and identification of high-throughput forensically important drugs and poisons, e.g., drugs of abuse (cocaine, amphetamines, synthetic cannabinoids, opiates, hallucinogen), sedative-hypnotics, antidepressants, non-steroidal anti-inflammatory drugs, pesticides (acaricides, fungicides, insecticides, nematicides), and cardiovascular agents in one single GC-Q Exactive run. After a simple extraction with ethyl ether and buffer, following centrifugation, the supernatant was injected into the system. For detection, spiked blood samples were analyzed by Orbitrap-GC-HRMS using an electrospray ionization in full scan mode with a scan range from 40 to 650 ( m/z ). The identification of drugs and poisons in the samples was carried out by searching the accurate molecular mass of characteristic fragment ions, ion rations and retention time (RT) against the in-house library that we developed with 70 ev electron energy. The limit of detection (LOD) for most compounds (249 in a total of 288 compounds) was below 100 ng/mL. For selectivity, no substances have been identified in drug-free blood samples from six different sources, and the method was suitable for the recovery and the carryover. The coefficient of variation (CV) of the RTs was below 0.99% in all reproducibility experiments. Mass accuracy was always better than 3 ppm, corresponding to a maximum mass error of 1.04 millimass units (mmu). The developed method was applied to 136 real samples from forensic cases, demonstrating its suitability for the sensitive and fast screening of high-throughput drugs in human blood samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    20
    Citations
    NaN
    KQI
    []