Sex-specific associations between life-history traits and a novel reproductive polymorphism in the Pacific field cricket.

2021 
Associations between heritable polymorphisms and life-history traits, such as development time or reproductive investment, may play an underappreciated role in maintaining polymorphic systems. This is because selection acting on a particular morph could be bolstered or disrupted by correlated changes in life history or vice versa. In a Hawaiian population of the Pacific field cricket (Teleogryllus oceanicus), a novel mutation (flatwing) on the X-chromosome is responsible for a heritable polymorphism in male wing structure. We used laboratory cricket colonies fixed for male wing morph to investigate whether males and females bearing the flatwing or normal-wing (wild-type) allele differed in their life-history traits. We found that flatwing males developed faster and had heavier testes than normal-wings, whereas flatwing homozygous females developed slower and had lighter reproductive tissues than normal-wing homozygous females. Our results advance our understanding of the evolution of polymorphisms by demonstrating that the genetic change responsible for a reproductive polymorphism can also have consequences for fundamental life-history traits in both males and females.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    2
    Citations
    NaN
    KQI
    []