Changes in the asymmetric dimethylarginine and endothelial nitric oxide synthase levels in pathogenesis of experimental diabetic retinopathy
2020
Endothelial dysfunction associated with impaired nitric oxide excretion plays an important role in the onset and progression of diabetic retinopathy. It has been proven that a decrease in the activity of endothelial NO-synthase (еNО-S), the inhibitor of which is asymmetric dimethylarginine (ADMA), plays an important role in this. Objective: to study the level of asymmetric dimethylarginine and endothelial nitric oxide synthase at different stages of development of diabetic retinopathy in the experiment. The study was conducted in Wistar white rats of 180-200 g weight. According to the tasks, the animals were separated into 2 groups as follows: group 1 – 60 intact animals, group 2 – 60 animals with simulated diabetic retinopathy without further correction. Type 2 diabetes mellitus and diabetic retinopathy were simulated through intraperitoneal administration of Streptozotocin (Sigma, USA) diluted in 0.1M citrate buffer with pH=4.5. Streptozotocin dose of 55 mg per kg of animal weight was divided into two administrations. The streptozotocin intake was preceded by a 28-day high-fat diet. Our study showed impaired endothelial function in diabetic retinopathy, as evidenced by an increased ADMA level (p<0.001). We have determined a stepwise increase of asymmetric dimethylarginine level in blood of rats with simulated pathology which is apparent in its highest at phase 3. Pathogenetic effect of increased ADMA on еNО-S activity was verified at all experimental stages, Impairment of physiological nitric oxide synthesis in simulated pathology has been proved as evidenced by reduced activity of endothelial NO-synthase yet on the 30th day with further negative dynamics up to the 180th day (p<0.001 compared with the intact group findings).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
0
Citations
NaN
KQI