In Situ Phosphorus-Doped Poly-Si by Low Pressure Chemical Vapor Deposition for Passivating Contacts

2020 
The potential of in situ phosphorus (P)-doped polycrystalline silicon (poly-Si) films by low pressure chemical vapor deposition (LPCVD) was studied for the realization of poly-Si/SiO x passivating contacts. In situ doping of poly-Si, as an alternative to ex situ methods, could enable simpler fabrication of industrial solar cells featuring these passivating contacts. With this approach, recombination current densities down to 1.7 fA/cm2 and 3.5 fA/cm2 were achieved on saw-damage removed and textured Cz-Si surfaces, respectively. It was found that the use of thermal SiO x , high active doping in the poly-Si, and hydrogenation improve the passivation quality. In addition, while post-LPCVD annealing was also beneficial, dopant loss from poly-Si at high annealing thermal budgets was observed to be detrimental to the specific contact resistivity and passivation quality, thus making it crucial to mitigate such dopant losses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    2
    Citations
    NaN
    KQI
    []