Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy.

2000 
We studied in vivo muscle energy metabolism in patients with Huntington's disease (HD) and dentatorubropallidoluysian atrophy (DRPLA) using P-31 magnetic resonance spectroscopy (MRS). Twelve gene-positive HP patients (4 presymptomatic patients) and 2 gene-positive DRPLA patients (1 presymptomatic patient) were studied. P-31-MRS at rest showed a reduced phosphocreatine-to-inorganic phosphate ratio in the symptomatic HD patients and DRPLA patient. Muscle adenosine triphosphate/(phosphocreatine + inorganic phosphate) at rest was significantly reduced in both groups of symptomatic and presymptomatic HD subjects and was below the normal range in the 2 DRPLA subjects. During recovery from exercise, the maximum rate of mitochondrial adenosine triphosphate production was reduced by 44% in symptomatic HD patients and by 35% in presymptomatic HD carriers. The maximum rate of mitochondrial adenosine triphosphate production in muscle was also reduced by around 46% in the 2 DRPLA subjects. Our findings show that HD and DRPLA share a deficit of in vivo mitochondrial oxidative metabolism, supporting a role for mitochondrial dysfunction as a factor involved in the pathogenesis of these polyglutamine repeat-mediated neurodegenerative disorders. The identification of P-31-MRS abnormalities may offer a surrogate biochemical marker by which to study disease progression and the effects of treatment in HD and DRPLA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    230
    Citations
    NaN
    KQI
    []