Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission
2014
A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
36
Citations
NaN
KQI