Exposure related mutagens in urine of rubber workers associated with inhalable particulate and dermal exposure

2003 
rations and acetylation status (NAT2) on urinary mutagenicity levels was also evaluated. Results: A non-significant increase of +1605 revertants/g creatinine in urinary mutagenicity during the workweek relative to levels observed on Sunday was observed for the total population. Subsequent multivariate regression analyses, with the subjects' weekday urinary mutagenicity levels as the depend- ent variable, revealed associations with environmental and mainstream tobacco smoke exposure, with the level of mutagenic contamination on surfaces with which the subjects had likely contact, with the subjects' inhalable particulate exposure level, with observed mild skin aberrations, and when the sub- jects had a slow acetylation phenotype. Similar associations, although weaker were observed with Sunday urinary mutagenicity levels as well, except for the association with slow acetylation phenotype. Based on measured exposure levels it could be estimated that a high potential for exposure to surface contamination with mutagenic activity increased weekday urinary mutagenicity by about 62% when compared to low exposed workers, while high inhalable particulate exposure levels increased week- day urinary mutagenicity levels by about 21%. Subjects with mild skin aberrations had an additional, non-significant, increase in weekday urinary mutagenic activity compared to subjects without any skin aberrations. Discussion: Results suggest that the dermal exposure route may contribute more to the level of genoto- xic compounds in urine of rubber workers than the inhalation route. Although the study was limited in size, the results warrant further investigation in the importance of and ways to effectively control the dermal exposure route in the rubber industry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    23
    Citations
    NaN
    KQI
    []