A graphical calculus for semi-groupal categories

2019 
Around the year 1988, Joyal and Street established a graphical calculus for monoidal categories, which provides a firm foundation for many explorations of graphical notations in mathematics and physics. For a deeper understanding of their work, we consider a similar graphical calculus for semi-groupal categories. We introduce two frameworks to formalize this graphical calculus, a topological one based on the notion of a processive plane graph and a combinatorial one based on the notion of a planarly ordered processive graph, which serves as a combinatorial counterpart of a deformation class of processive plane graphs. We demonstrate the equivalence of Joyal and Street’s graphical calculus and the theory of upward planar drawings. We introduce the category of semi-tensor schemes, and give a construction of a free monoidal category on a semi-tensor scheme. We deduce the unit convention as a kind of quotient construction, and show an idea to generalize the unit convention. Finally, we clarify the relation of the unit convention and Joyal and Street’s construction of a free monoidal category on a tensor scheme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    5
    Citations
    NaN
    KQI
    []