The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil

2020 
Soil-dwelling animals are at risk of pathogen infection in soils. When choosing nesting sites, animals could reduce this risk by avoiding contact with pathogens, yet there is currently little evidence. We tested this hypothesis using Solenopsis invicta as a model system. Newly mated queens of S. invicta were found to nest preferentially in soil containing more actinobacteria of Streptomyces and Nocardiopsis and to be attracted to two volatiles produced by these bacteria, geosmin and 2-methylisoborneol. Actinobacteria-rich soil was favored by S. invicta and this soil contained fewer putative entomopathogenic fungi than adjacent areas. Queens in such soil benefited from a higher survival rate. In culture, isolated actinobacteria inhibited entomopathogenic fungi, suggested that their presence may reduce the risk of fungal infection. These results indicated a soil-dwelling ant may choose nest sites presenting relatively low pathogen risk by detecting the odors produced by bacteria with anti-fungal properties. Insect pathogens are widely distributed in soil. Soil-dwelling insects must overcome challenges arising from pathogens in soil. Here we report that a soil-dwelling ant may choose nest sites with lower pathogen infection risk, specifically the ant can sense the cues of some actinobacteria that can inhibit the growth of the pathogens. By choosing the sites with higher abundance of some actinobacteria, the ant can get a higher survival rate. The ant and some actinobacteria thus coordinate a specialized adaptive strategy of infection risk management, enabling the ant population to grow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    6
    Citations
    NaN
    KQI
    []