Tuning of Fermi Contour Anisotropy in GaAs (001) 2D Holes via Strain

2017 
We demonstrate tuning of the Fermi contour anisotropy of two-dimensional (2D) holes in a symmetric GaAs (001) quantum well via the application of in-plane strain. The ballistic transport of high-mobility hole carriers allows us to measure the Fermi wavevector of 2D holes via commensurability oscillations as a function of strain. Our results show that a small amount of in-plane strain, on the order of $10^{-4}$, can induce significant Fermi wavevector anisotropy as large as 3.3, equivalent to a mass anisotropy of 11 in a parabolic band. Our method to tune the anisotropy \textit{in situ} provides a platform to study the role of anisotropy on phenomena such as the fractional quantum Hall effect and composite fermions in interacting 2D systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []