Photon-modulated impurity scattering on a topological insulator surface
2017
We consider the Dirac electron scattering off a pointlike impurity absorbed on the surface of a topological insulator, which is irradiated by a beam of circularly polarized light. It is found that the Dirac electron backscattering is allowed even for a nonmagnetic impurity due to the reshuffled spectrum caused by the light, and so exhibits interesting spin texture and Friedel oscillation in the real space. Furthermore, in the charge density of states, the interplay of the light irradiation and impurity scattering can lead to an in-gap bound state around the Dirac point, heavily modulating the Dirac dispersion. We discuss the different scenarios for resonant and off-resonant lights in detail. The impurity scattering feature is sensitive to the parameters of the polarized light, which suggests a possibility to optically manipulate the topological surface states.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
4
Citations
NaN
KQI