Numerical Solution of Granular Hydrodynamics from Dilute, Fast to Dense, Quasi‐Static Flow

2009 
Many contributions on the modelling of granular flow and the solving of such models numerically restrict themselves either to fast, dilute or to dense, quasi‐static granular flow. In many engineering applications both regimes appear at the same time in different parts of the simulations or consecutively at different stages of flow. We numerically investigate a continuum model for granular flow, which covers the regime of fast dilute flow as well as slow dense flow down to vanishing velocity. Our model is at small and intermediate densities equivalent to the model used by Bocquet et al.. [1], An inherent instability in this model for vanishing granular temperature and vanishing velocities is removed by a cross over from a kinetic pressure to an athermal yield pressure at densities close to random close packing. Also the model for the viscosity is modified such that it diverges for small granular temperatures analogous to the diverging viscosities of liquids close to the glass transition. The presented mode...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []