Fracture toughness of a rejuvenated β-Ti reinforced bulk metallic glass matrix composite

2022 
Abstract A β-Ti dendrite reinforced Zr-based bulk metallic glass composite (BMGC) was found to be brittle when cast in a large size. The reasons for the embrittlement and the effectiveness of the cryothermal cycling (CTC) treatment in restoring the mode I fracture toughness are examined. Plasticity in all the CTC treated BMGC is estimated from the distribution and occurrence of pop-ins in nanoindentation tests and by measuring the magnitude of enthalpy of relaxation (ΔHrel) via differential scanning calorimetry (DSC). This is further validated by examining the strain-to-failure (ef) in compression tests. Mode I fracture behaviour of the as-cast embrittled BMGC and the CTC treated BMGC, which exhibits maximum plasticity, is examined. Results show that both BMGCs are equally brittle and exhibit 5 times lower notch toughness (KQJ) than their tougher counterpart. Post-facto imaging of the side surfaces reveals the absence of notch-tip plasticity in both BMGCs. The lack of notch tip plasticity of CTC treated BMGC, despite exhibiting signatures of plasticity in nanoindentation and higher ΔHrel is rationalized by reassessing the origin of pop-ins in nanoindentation tests and describing the variations in chemical and topological short range ordering during CTC, respectively. Implications of these results in terms of improving the fracture toughness of structurally relaxed BMGCs via CTC are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    1
    Citations
    NaN
    KQI
    []