Optimized preceramic polymer for 3D structured ceramics via fused deposition modeling

2021 
Abstract 3D structured ceramics stemmed from preceramic polymers via additive manufacturing have attracted much attention recently. However, these polymers with high ceramic yield are so brittle that extrusion-based additive manufacturing techniques are hardly able to be utilized for assembling 3D structures. Herein, we developed a strategy to prepare feedstocks for these manufacturing techniques, i.e., utilizing a small amount of thermal-plastic polymer to optimize the preceramic polymer while good compatibility is required between the two polymers to ensure a homogeneous mixture. Polycarbosilane and polypropylene were selected as the representative materials. Polypropylene occupied a small proportion (≤5wt.%) and significantly improved the formability of the precursor. Three-dimensional SiC were obtained via fused deposition modeling combined with crosslinking and pyrolysis. The SiC ceramic filaments showed a mean tensile strength of 471 MPa. The strategy is also applicable to a large field of ceramic systems with corresponding precursor, such as sialon ceramic and multicomponent Si-based ceramics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []