A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol
2007
Summary Francisella tularensis is an intracellular bacterial pathogen, and is a category A bioterrorism agent. Within quiescent human macrophages, the F. tularensis pathogenicity island (FPI) is essential for bacterial growth within quiescent macrophages. The F. tularensis-containing phagosome matures to a late endosome-like stage that does not fuse to lysosomes for 1-8 h, followed by gradual bacterial escape into the macrophage cytosol. Here we show that the FPI protein IglD is essential for intracellular replication in primary human monocyte-derived macrophages (hMDMs). While the parental strain replicates robustly in pulmonary, hepatic and splenic tissues of BALB/c mice associated with severe immunopathologies, the isogenic iglD mutant is severely defective. Within hMDMs, the iglD mutant-containing phagosomes mature to either a late endosome-like phagosome, similar to the parental strain, or to a phagolysosome, similar to phagosomes harbouring the iglC mutant control. Despite heterogeneity and alterations in pha- gosome biogenesis, the iglD mutant bacteria escape into the cytosol faster than the parental strain within hMDMs and pulmonary cells of BALB/c mice. Co-infections of hMDMs with the wild-type strain and the iglD mutant, or super-infection of iglD mutant- infected hMDMs with the wild-type strain show that the mutant strain replicates robustly within the cytosol of hMDMs coinhabited by the wild strain. However, when the wild-type strain-infected hMDMs are super-infected by the iglD mutant, the mutant fails to replicate in the cytosol of communal macrophages. This is the first demonstration of a F. tularensis novel protein essential for proliferation in the macrophage cytosol. Our data indicate that F. tularensis trans- duces signals to the macrophage cytosol to remodel it into a proliferative niche, and IglD is essential for transduction of these signals.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
82
Citations
NaN
KQI