4-hydroxy-3-methoxy cinnamic acid accelerate myoblasts differentiation on C2C12 mouse skeletal muscle cells via AKT and ERK 1/2 activation

2019 
Abstract Background The dietary intake of plant-based supplements has a vital role in human health and development. However, the actions of secondary plant metabolites on cell growth, differentiation and their signaling mechanisms are still unclear. Purpose In this study, we aim to investigate the C2C12 myoblast cells proliferation and differentiation by 4-hydroxy-3-methoxy cinnamic acid (=HMCA, ferulic acid) in a dose-dependent manner and to reveal its underlying mechanism of action. Methods : The effect of HMCA on C2C12 cell proliferation and differentiation were evaluated by expression of BMP's marker genes (-2, -4, -6, -7) and related myogenic proteins were analyzed by quantitative PCR and western blot techniques, respectively. Results The in vitro findings confirmed that the HMCA upregulates BMPs (including BMP-2, -4, -6, and-7), gene expression in C2C12 skeletal muscle cells. Exposure to the lower dose of HMCA caused a significantly greater induction of myogenic differentiation than the higher dose during three- and six-day treatments. Further, the C2C12 myogenic differentiation signaling proteins MyoD, myogenin, JAK-1, -2, -3, STAT -2, -3, AMPK-α, ERK(1/2), and AKT were more preferentially activated by HMCA exposure cells than by untreated models. Thus, the experiment with inhibitors revealed that the HMCA induced muscle cell proliferation and differentiation through AKT and ERK (1/2) signaling cascades. Also, HMCA enhanced the C2C12 muscle cell differentiation protein markers such as myogenin, AKT and ERK (1/2) significantly ( p  ≤ 0.05) at day three in chemical inhibitors of LY 294002 and PD98056 treated samples. Conclusion The HMCA has a significant effect on muscle cell differentiation through ERK(1/2) and AKT signaling activation. Also, the HMCA promotes C2C12 muscle cell proliferation and differentiation via activation of osteogenic genes and myogeneic protein markers. Therefore, this study suggests that the natural phenolic compound HMCA has a potent function in muscle cell proliferation, differentiation, and development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []