Electrotonic potentials in simulated chronic inflammatory demyelinating polyneuropathy at 20°C–42°C

2015 
Threshold electrotonus changes have been studied following warming to 37°C and cooling to 25°C in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). To extend the tracking of these changes also during hypothermia (≤ 25°C) and hyperthermia (≥ 40°C), and to explain their mechanisms, we investigate the effects of temperature (from 20°C to 42°C) on polarizing nodal and internodal electrotonic potentials and their current kinetics in previously simulated case of 70% CIDP. The computations use our temperature-dependent multi-layered model of the myelinated human motor nerve fiber. While the changes of electrotonic potentials and their current kinetics are largely similar for the physiological range of 28–37°C, they are altered during hypothermia and hyperthermia in the normal and CIDP cases. The normal (at 37°C) resting membrane potential is further depolarized or hyperpolarized during hypothermia or hyperthermia, respectively, and the internodal current types defining these changes are the same for both cases. Unexpectedly, our results show that in the CIDP case, the lowest and highest critical temperatures for blocking of electrotonic potentials are 20°C and 39°C, while in the normal case the highest critical temperature for blocking of these potentials is 42°C. In the temperature range of 20–39°C, the relevant potentials in the CIDP case, except for the lesser value (at 39°C) in hyperpolarized resting membrane potential, are modified: (i) polarizing nodal and depolarizing internodal electrotonic potentials and their defining currents are increased in magnitude; (ii) inward rectifier (IIR) and leakage (ILk) currents, defining the hyperpolarizing internodal electrotonic potential, are gradually increased with the rise of temperature from 20°C to 39°C, and (iii) the accommodation to long-lasting hyperpolarization is greater than to depolarization. The present results suggest that the electrotonic potentials in patients with CIDP are in high risk for blocking not only during hypothermia and hyperthermia, but they are also in risk for worsening at the temperature range of 37–39°C.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []