Age-related macular degeneration: Beyond anti-angiogenesis

2014 
Recently, anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration have been developed. These agents, originally developed for their anti-angiogenic mechanism of action, probably also work through an anti-permeability effect in preventing or reducing the amount of leakage from submacular neovascular tissue. Other treatment modalities include laser photocoagulation, photodynamic therapy with verteporfin, and submacular surgery. In reality, these latter treatments can be similarly categorized as anti-angiogenic because their sole aim is destroying or removing choroidal neovascularization (CNV). At the cellular level, CNV resembles stereotypical tissue repair that consists of several matricellular components in addition to neovascularization. In the retina, the clinical term CNV is a misnomer since the term may more appropriately be referred to as aberrant submacular repair. Furthermore, CNV raises a therapeutic conundrum: To complete or correct any reparative process in the body, angiogenesis becomes an essential component. Anti-angiogenic therapy, in all its guises, arrests repair and causes the hypoxic environment to persist, thus fueling pro-angiogenesis and further development of CNV as a component of aberrant repair. However, we realize that anti-vascular endothelial growth factor therapy preserves vision in patients with age-related macular degeneration, albeit temporarily and therefore, repeated treatment is needed. More importantly, however, anti-angiogenic therapy demonstrates that we can at the very least tolerate neovascular tissue beneath the macula and preserve vision in contrast to our historical approach of total vascular destruction. In this clinical scenario, it may be possible to look beyond anti-angiogenesis if our goal is facilitating submacular repair without destroying the neurosensory retina. Thus, in this situation of neovascular tolerance, it may be timely to consider treatments that facilitate vascular maturation, rather than its arrest or destruction. This would neutralize hypoxia, thus removing the stimulus that drives neovascularization and in turn the need for repeated lifelong intravitreal therapy. A pro-angiogenic approach would eliminate neovascular leakage and ultimately complete repair and preserve the neurosensory retina.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    98
    References
    27
    Citations
    NaN
    KQI
    []