Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrödinger equation

2017 
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analyzing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in a fully analytical way, the number and the features (amplitude and velocity) of solitonlike excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits us to predict and analyze the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We show, however, that important differences exist between the two models, arising from the different scaling rules obeyed by the soliton velocities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []