Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrödinger equation
2017
We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a harmonic excitation by analyzing the case of the semiclassical defocusing nonlinear Schrodinger equation, which models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin approach to the solution of the associated scattering problem we accurately predict, in a fully analytical way, the number and the features (amplitude and velocity) of solitonlike excitations emerging post-breaking, as a function of the dispersion smallness parameter. This also permits us to predict and analyze the near-recurrences, thereby inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We show, however, that important differences exist between the two models, arising from the different scaling rules obeyed by the soliton velocities.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
7
Citations
NaN
KQI