Invariant Hough random ferns for RGB-D-based object detection
2016
This paper studies the challenging problem of object detection using rich image and depth features. An invariant Hough random ferns framework for RGB-D images is proposed here, which primarily consists of a rotation-invariant RGB-D local binary feature, random ferns classifier training, Hough mapping and voting, searches for the maxima, and back projection. In comparison with traditional three-dimensional local feature extraction techniques, this method is effective in reducing the amount of computation required for feature extraction and matching. Moreover, the detection results showed that the proposed method is robust against rotation and scale variations, changes in illumination, and part-occlusions. The authors believe that this method will facilitate the use of perception in fields such as robotics.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
1
Citations
NaN
KQI