Toward the Ultimate Limit of Connectivity in Quantum Dots with High Mobility and Clean Gaps.

2016 
Colloidal quantum dots (CQDs) are highly versatile nanoscale optoelectronic building blocks, but despite their materials engineering flexibility, there is a considerable lack of fundamental understanding of their electronic structure as they couple within thin films. By employing a joint experimental–theoretical study, we reveal the impact of connectivity in CQD assemblies, going beyond the single CQD picture. High-resolution transmission electron microscopy (HR-TEM) demonstrates connectivity motifs across different CQD sizes and length scales and provides the necessary perspective to build robust computational models to systematically study the achievable degree of connectivity in these materials. We focused on state-of-the-art surface ligand treatments, taking into account both the degree of connectivity and nanocrystal orientation, and performed ab initio simulations within the phonon-assisted hopping regime. Importantly, both the TEM studies and our simulation results revealed morphological and electr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    19
    Citations
    NaN
    KQI
    []