mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells

2009 
Despite the recent identification of the transcriptional regulatory circuitry involving SOX2, NANOG, and OCT-4, the intracellular signaling networks that control pluripotency of human embryonic stem cells (hESCs) remain largely undefined. Here, we demonstrate an essential role for the serine/threonine protein kinase mammalian target of rapamycin (mTOR) in regulating hESC long-term undifferentiated growth. Inhibition of mTOR impairs pluripotency, prevents cell proliferation, and enhances mesoderm and endoderm activities in hESCs. At the molecular level, mTOR integrates signals from extrinsic pluripotency-supporting factors and represses the transcriptional activities of a subset of developmental and growth-inhibitory genes, as revealed by genome-wide microarray analyses. Repression of the developmental genes by mTOR is necessary for the maintenance of hESC pluripotency. These results uncover a novel signaling mechanism by which mTOR controls fate decisions in hESCs. Our findings may contribute to effective strategies for tissue repair and regeneration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    159
    Citations
    NaN
    KQI
    []