Microarray Analysis of Port Wine Stains Before and After Pulsed Dye Laser Treatment

2013 
Background and Objectives: Neither the pathogenesis of port wine stain (PWS) birthmarks nor tissue effects of pulsed dye laser (PDL) treatment of these lesions is fully understood. There are few published reports utilizing gene expression analysis in human PWS skin. We aim to compare gene expression in PWS before and after PDL, using DNA microarrays that represent most, if not all, human genes to obtain comprehensive molecular profiles of PWS lesions and PDL-associated tissue effects. Materials and Methods: Five human subjects had PDL treatment of their PWS. One week later, three biopsies were taken from each subject: normal skin (N); untreated PWS (PWS); PWS post-PDL (PWS þ PDL). Samples in- cluded two lower extremity lesions, two facial lesions, and one facial nodule. High-quality total RNA isolated from skin biopsies was processed and applied to Affymetrix Hu- man gene 1.0ST microarrays for gene expression analysis. We performed a 16 pair-wise comparison identifying either up- or down-regulated genes between N versus PWS and PWS versus PWS þ PDL for four of the donor sam- ples. The PWS nodule (nPWS) was analyzed separately. Results: There was significant variation in gene expres- sion profiles between individuals. By doing pair-wise com- parisons between samples taken from the same donor, we were able to identify genes that may participate in the formation of PWS lesions and PDL tissue effects. Genes associated with immune, epidermal, and lipid metabolism were up-regulated in PWS skin. The nPWS exhibited more profound differences in gene expression than the rest of the samples, with significant differential expres- sion of genes associated with angiogenesis, tumorigenesis, and inflammation. Conclusion: In summary, gene expression profiles from N, PWS, and PWS þ PDL demonstrated significant varia- tion within samples from the same donor and between donors. By doing pair-wise comparisons between samples taken from the same donor and comparing these results between donors, we were able to identify genes that may participate in formation of PWS and PDL effects. Our pre- liminary results indicate changes in gene expression of angiogenesis-related genes, suggesting that dysregulation of angiogenic signals and/or components may contribute to PWS pathology. Lasers Surg. Med. 45:67-75, 2013. 2012 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    14
    Citations
    NaN
    KQI
    []