The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex.

2008 
Abstract Cathepsin K is the major collagenolytic enzyme produced by bone-resorbing osteoclasts. We showed earlier that the unique triple-helical collagen-degrading activity of cathepsin K depends on the formation of complexes with bone-or cartilage-resident glycosaminoglycans, such as chondroitin 4-sulfate (C4-S). Here, we describe the crystal structure of a 1: n complex of cathepsin K:C4-S inhibited by E64 at a resolution of 1.8 A. The overall structure reveals an unusual “beads-on-a-string”-like organization. Multiple cathepsin K molecules bind specifically to a single cosine curve-shaped strand of C4-S with each cathepsin K molecule interacting with three disaccharide residues of C4-S. One of the more important sets of interactions comes from a single turn of helix close to the N terminus of the proteinase containing a basic amino acid triplet (Arg8-Lys9-Lys10) that forms multiple hydrogen bonds either to the caboxylate or to the 4-sulfate groups of C4-S. Altogether, the binding sites with C4-S are located in the R-domain of cathepsin K and are distant from its active site. This explains why the general proteolytic activity of cathepsin K is not affected by the binding of chondroitin sulfate. Biochemical analyses of cathepsin K and C4-S mixtures support the presence of a 1: n complex in solution; a dissociation constant, K d , of about 10 nM was determined for the interaction between cathepsin K and C4-S.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    83
    Citations
    NaN
    KQI
    []