Outer membrane proteins derived from non-cyanobacterial lineage cover the peptidoglycan of Cyanophora paradoxa cyanelles and serve as a cyanelle diffusion channel.

2016 
Abstract The cyanelle is a primitive chloroplast that contains a peptidoglycan layer between its inner and outer membranes. Despite the fact that the envelope structure of the cyanelle is reminiscent of Gram-negative bacteria, the Cyanophora paradoxa genome appears to lack genes encoding homologs of putative peptidoglycan-associated outer membrane proteins and outer membrane channels. These are key components of Gram-negative bacterial membranes, maintaining structural stability and regulating permeability of outer membrane, respectively. Here, we discovered and characterized two dominant peptidoglycan-associated outer membrane proteins of the cyanelle (~2 x 10 6 molecules per cyanelle). We named these proteins CppF and CppS (cyanelle peptidoglycan-associated proteins). They are homologous to each other and function as a diffusion channel that allows the permeation of compounds with Mr <1,000, as revealed by permeability measurements using proteoliposomes reconstituted with purified CppS and CppF. Unexpectedly, amino acid sequence analysis revealed no evolutionary linkage to cyanobacteria, showing only a moderate similarity to cell surface proteins of bacteria belonging to Planctomycetes phylum. Our findings suggest that the C. paradoxa cyanelle adopted non-cyanobacterial lineage proteins as its main outer membrane components, providing a physical link with the underlying peptidoglycan layer and functioning as a diffusion route for various small substances across the outer membrane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    6
    Citations
    NaN
    KQI
    []