Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin

2021 
Abstract Land use and land cover (LULC) change caused by human activities is a major source of anthropogenic carbon emissions and a driver of climate change. The Mekong Region is highly dynamic, experiencing extensive LULC change in recent decades. This study provides a spatially and temporally continuous estimate of LULC change for the Mekong River Basin for 2001–2019 using time series analysis of MODIS data coupled with a spatiotemporal carbon bookkeeping model to track carbon losses and recovery. The LULC change product has an overall accuracy of 74.4 ± 1.9% (82.1 ± 1.7% after consolidating tree-dominated classes), including an increase of 5.6% after combining with existing MODIS products (referred to as the M-CCDC process). Two of the largest components of LULC change in the region are the establishment of plantations and agricultural expansion, which were estimated to be 33,617 ± 7342 km2 and 14,915 ± 4682 km2 between 2003 and 2014. We found that 82% of the deforested area was converted to tree plantations. Among all the newly added plantations, 86% replaced natural forests and 12% replaced agricultural land. In addition, existing maps of annual tree canopy cover (TCC) were used to assess forest disturbances that do not result in LULC conversions. The M-CCDC results combined with the forest disturbances derived from TCC maps were coupled to a spatiotemporal carbon bookkeeping model to estimate carbon emissions and uptake. Carbon emissions were 72.9 ± 6.2 Tg C yr−1 during 2001–2017; emissions increase to 102.8 ± 8.6 Tg C yr−1 if including carbon not yet released to the atmosphere in the form of decomposing slash and wood products. Carbon uptake for the same period was −35.5 ± 4.9 Tg C yr−1, with carbon uptake from new plantations offsetting almost half of the emissions from deforestation in this area. Assessment of post-deforestation land use is crucial for quantifying the short- and longer- term carbon consequences of LULC change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    0
    Citations
    NaN
    KQI
    []