Structure of Nanocrystalline, Partially Disordered MoS2+δ Derived from HRTEM—An Abundant Material for Efficient HER Catalysis

2020 
Molybdenum sulfides (MoSx, x > 2) are promising catalysts for the hydrogen evolution reaction (HER) that show high hydrogen evolution rates and potentially represent an abundant alternative to platinum. However, a complete understanding of the structure of the most active variants is still lacking. Nanocrystalline MoS2+δ was prepared by a solvothermal method and immobilized on graphene. The obtained electrodes exhibit stable HER current densities of 3 mA cm−2 at an overpotential of ~200 mV for at least 7 h. A structural analysis of the material by high-resolution transmission electron microscopy (HRTEM) show partially disordered nanocrystals of a size between 5–10 nm. Both X-ray and electron diffraction reveal large fluctuations in lattice spacing, where the average c-axis stacking is increased and the in-plane lattice parameter is locally reduced in comparison to the layered structure of crystalline MoS2. A three-dimensional structural model of MoS2+δ could be derived from the experiments, in which [Mo2S12]2− and [Mo3S13]2− clusters as well as disclinations represent the typical defects in the ideal MoS2 structure. It is suggested that the partially disordered nanostructure leads to a high density of coordinatively modified Mo sites with lower Mo–Mo distances representing the active sites for HER catalysis, and, that these structural features are more important than the S:Mo ratio for the activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []