Learning Stochastic Decision Trees.
2021
We give a quasipolynomial-time algorithm for learning stochastic decision trees that is optimally resilient to adversarial noise. Given an $\eta$-corrupted set of uniform random samples labeled by a size-$s$ stochastic decision tree, our algorithm runs in time $n^{O(\log(s/\varepsilon)/\varepsilon^2)}$ and returns a hypothesis with error within an additive $2\eta + \varepsilon$ of the Bayes optimal. An additive $2\eta$ is the information-theoretic minimum.
Previously no non-trivial algorithm with a guarantee of $O(\eta) + \varepsilon$ was known, even for weaker noise models. Our algorithm is furthermore proper, returning a hypothesis that is itself a decision tree; previously no such algorithm was known even in the noiseless setting.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI