To be unitary-invariant or not?: a simple but non-trivial proposal for the complexity between states in quantum mechanics/field theory

2019 
We make comments on some shortcomings of the non-unitary-invariant and non-bi-invariant complexity in quantum mechanics/field theory and argue that the unitary-invariant and bi-invariant complexity is still a competitive candidate in quantum mechanics/field theory, contrary to quantum circuits in quantum computation. Based on the unitary-invariance of the complexity and intuitions from the holographic complexity, we propose a novel complexity formula between two states. Our proposal shows that i) the complexity between certain states in two dimensional CFTs is given by the Liouville action, which is compatible with the path-integral complexity; ii) it also gives natural interpretation for both the CV and CA holographic conjectures and identify what the reference states are in both cases. Our proposal explicitly produces the conjectured time dependence of the complexity: linear growth in chaotic systems. Last but not least, we present interesting relations between the complexity and the Lyapunov exponent: the Lyapunov exponent is proportional to the complexity growth rate in linear growth region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    12
    Citations
    NaN
    KQI
    []