Immunoengineering Biomaterials in Cell-Based Therapy for Type 1 Diabetes.

2021 
Type 1 diabetes (T1D) is caused by low insulin production and chronic hyperglycemia due to the destruction of pancreatic β-cells. Cell transplantation is an attractive alternative approach compared to insulin injection. However, cell therapy has been limited by major challenges including life-long requirements for immunosuppressive drugs in order to prevent host immune responses. Encapsulation of the transplanted cells can solve the problem of immune rejection, by providing a physical barrier between the transplanted cells and the recipient's immune cells. Despite current disputes in cell encapsulation approaches, thanks to recent advances in the fields of biomaterials and transplantation immunology, extensive effort has been dedicated to immunoengineering strategies in combination with encapsulation technologies to overcome the problem of the host's immune responses. The current review summarizes the most commonly used encapsulation and immunoengineering strategies combined with cell therapy which has been applied as a novel approach to improve cell replacement therapies for the management of T1D. Recent advances in the fields of biomaterial design, nanotechnology, as well as deeper knowledge about immune modulation had significantly improved cell encapsulation strategies. However, further progress requires the combined application of novel immunoengineering approaches and islet/s-cell transplantation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []