From Astrochemistry to Astrobiology ...... and Back Again
2006
Tremendous strides have been made in our understanding of interstellar material over the past twenty five years thanks to significant developments in observational infrared astronomy and laboratory astrophysics. Twenty five years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds generally ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of interstellar dust is reasonably well understood. In molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is reasonably well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared spectroscopic studies of interstellar space, combined with laboratory simulations and theoretical studies of PAHs and interstellar ices, have revealed the widespread presence of interstellar PAHs and the composition of interstellar precometary ices. The remainder of the presentation will focus on the photochemical evolution of these icy materials. Within a molecular cloud, and especially the presolar nebula, materials frozen into the ices are photoprocessed by ultraviolet light and more complex molecules are produced. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex materials delivered to habitable planets and their composition may be related to the origin of life.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI