Light- and Temperature-Assisted Spin State Annealing: Accessing the Hidden Multistability

2020 
Among the responsive multistable materials, spin crossover (SCO) systems are of particular interest for stabilizing multiple spin states with various stimulus inputs and physical outputs. Here in a 2D Hofmann-type coordination polymer [Fe(isoq)2{Au(CN)2}2] (isoq = isoquinoline), a medium-temperature annealing process is introduced after a light/temperature stimulation, which accesses hidden multistability of the spin state. With the combined effort of magnetic, crystallographic and Mossbauer spectral investigation, these distinct spin states are identified and the light- and temperature-assisted transition pathways are clarified. Such excitation-relaxation and trapping-relaxation joint mechanisms, as ingenious interplays between the kinetic and thermodynamic effects, uncover hidden possibilities for the discovery of multistable materials and the development of multistate intelligent devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    13
    Citations
    NaN
    KQI
    []