Multiband circular dichroism from bilayer rotational F4 nanostructure arrays

2019 
A chiral nanostructure array is designed, which is composed of a bilayer rotational F4-shaped nanoarray configuration. The surface plasmon resonance and circular dichroism are studied by changing the parameters of the structure. The results show that the structure has strong multiband circular dichroism, which is attributed to the coupling of the layers. In theory, based on the Born–Kuhn model, the upper and lower nanostructures are equivalent to electric dipoles. By analyzing the coupling mode of electric dipoles in the upper and lower layer, the mechanism of circular dichroism and the shift of the circular dichroism resonance are revealed. Besides, there are several specific modes that are fault tolerant of fabrication issues. This feature unveils the bright prospect of spectral anti-interference. So, the suggested chiral nanostructure can be used in biologically targeted molecular detection and spectral sensing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    5
    Citations
    NaN
    KQI
    []